登录
加入联盟
找回密码
航空人生
新一代连飞客户端下载
空管人生
中国航空运动协会推荐
WEFLY
模拟飞行玩家聊天工具
门户
文章
商城
二手市场
外包服务
模飞软件
硬件设备
飞行体验
学院
云课堂
问答
资料下载
论坛
模拟飞行
低空飞行
太空探索
航圈
资源
素材
下载
企业
无人机论坛
»
论坛
›
无人机DIY专区
›
DIY经验区
›
惊艳世人的NASA火星无人机,究竟是怎么设计出来的? ...
返回列表
发新帖
查看:
750
|
回复:
1
惊艳世人的NASA火星无人机,究竟是怎么设计出来的?
[复制链接]
13619860410
13619860410
当前离线
积分
1708
窥视卡
雷达卡
55
主题
850
帖子
1708
积分
金牌飞友
金牌飞友, 积分 1708, 距离下一级还需 1292 积分
金牌飞友, 积分 1708, 距离下一级还需 1292 积分
积分
1708
飞币
856
注册时间
2017-8-18
发消息
发表于 2022-10-23 09:49:33
|
显示全部楼层
|
阅读模式
惊艳世人的NASA火星无人机,究竟是怎么设计出来的?
无人机
,
nasa
,
怎么
,
设计
,
出来
相关帖子
•
大型无人机的时代来了
•
民用轻小型固定翼无人机飞控功能
•
中国大型无人机飞控系统企业纵览(2025版)
•
中科院开源Jointloc:联合相对绝对位姿的无人机视觉定位
•
光纤无人机大量使用、乌无人机袭击升级,俄乌无人机战争进入新阶段?
•
运-5再魔改!国产大型无人机鸿雁 HY100 量产交付
•
无人机飞越南极冰墙,意外拍下难以置信的恐怖画面!35个极寒之地的惊人发现
•
无人机航拍圈年终总结:接着奏乐,接着舞!
•
无人机怎么充电
•
【解读】穿越机有多危险?无人机新政对其无效?
回复
使用道具
举报
提升卡
置顶卡
沉默卡
喧嚣卡
变色卡
千斤顶
照妖镜
maoxuesong
maoxuesong
当前离线
积分
1233
窥视卡
雷达卡
397
主题
441
帖子
1233
积分
金牌飞友
金牌飞友, 积分 1233, 距离下一级还需 1767 积分
金牌飞友, 积分 1233, 距离下一级还需 1767 积分
积分
1233
飞币
790
注册时间
2017-7-17
发消息
发表于 2022-10-23 10:00:01
|
显示全部楼层
如果一切顺利,那么「机智号」将成为第一架翱翔在火星上空的飞行器。
这架名为「机智号」的无人直升机,被吊装在「毅力号」火星车的肚子下面,一路送往那颗红色星球。机智号本体只有 1.8 公斤重,一盒纸巾大小,四条机械腿上却装有两根长达 1.2 米的碳纤维旋翼。除了拍照它不执行科学任务,主要是验证在火星上自主飞行的能力。
为了完成这项艰巨的任务,「机智号」必须经受住一系列考验——严酷的温度、苛刻的功率限制,并在距离地球达10光分的火星上完成90秒的飞行任务。由于距离过远,实时通信或控制显然无法实现,它必须自主飞行。
那么NASA喷气推进实验室(JPL)是如何设计这架直升飞机的?我们采访到NASA JPL火星无人机行动负责人Tim Canham。
整个设计过程最重要的策略,是权衡设计与火星无人机的任务背景,这也是本次技术演示的最大意义所在。「机智号」并不需要像「毅力号」火星车那样完成科学考察工作;相反,它只需要做好自己的本份,飞行一段距离。如果运气好,「机智号」还可以捕捉几张航拍图,仅此而已。这项任务的价值在于,我们要证明低空飞机器能够在火星表面飞行,并收集更多数据,以指导下一代火星旋翼飞机的设计与制造工作。一切只是开始,更令人兴奋的远景发展还在后头。
「机智号」不需要刻意完成任何复杂的任务,因为光是火星无人机这个概念就已经足够复杂了。在火星上放飞无人机极具挑战性,除了功率与通信限制之外,还有一项核心挑战——火星的大气密度仅为地球的1%。
考虑到上述情况,Tim Canham告诉我们,「机智号」只要能够在火星表面成功起降一次,对NASA来说就已经是场辉煌的胜利。Canham协助开发了指挥「机智号」运行的软件架构。作为「机智号」运营团队的负责人,Canham目前主要处理无人机计划与「毅力号」火星车团队之间的协调工作。通过交流,我们希望深入了解「机智号」无人机如何在火星表面自主实现起降飞行。
问:您能聊聊「机智号」无人机的硬件配备吗?
Tim Canham:
「机智号」无人机属于技术演示项目,所以JPL愿意为此承担更高的失败风险。这一点与火星车乃至深空探测器不同——后者属于B级任务,不少NASA员工已经在这部分硬件与软件开发工作中投入了多年时间。
对于纯技术演示,JPL倾向于尝试更多新的实现方式。因此,我们决定尽可能摆脱手工件的束缚,大量采用现成的消费类硬件。目前市面上已经存在很多坚实耐用且能够抵御辐射的航空电子元件,而且大部分技术属于普通商业级产品。
以处理器为例,我们使用的是高通公司提供的骁龙801芯片。它实际上就是一块手机处理器,而且体积非常小巧。不瞒您说,骁龙801实际上是此次任务中最先进的处理器,其性能反而比「毅力号」火星车上的处理器强大得多。事实上,这块无人机使用的芯片拥有比火星力高出几个数量级的算力,负责通过500 Hz主频在制导期间循环运行,以保持无人机在火星大气中的平衡飞行。更重要的是,我们还需要捕捉图像并分析特征,同时以30 Hz频率逐帧跟踪画面内容。总之,这些任务都对处理器性能提出了极高要求,而NASA目前使用的一切航空电子元件都达不到要求。实际上,我们已经开始从SparkFun上订购零件。我们的理念非常简单:虽然这些只是商用硬件,但我们会进行全面测试;只要效果良好,就应该可以直接使用。
问:能否介绍一下「机智号」使用的导航传感器?
Tim Canham:
我们使用的手机级 IMU、激光测高仪(来自SparkFun)以及向下的 VGA 摄像机进行单眼特征跟踪。导航时,无人机逐帧比较几十个特征,以跟踪相对位置找出方向和速度。这一切功能都会通过位置估计来完成,而不需要记住特征或创建地图。
图:NASA机智号无人机底部图,可以看到其上搭载的激光测高仪和导航摄像机。
我们还装有一台倾角仪,用于在起飞时确定地面的倾斜度。另外,无人机上搭载一个1300万像素的手机级彩色摄像头——与导航无关,我们只是希望在飞行过程中拍摄几张精美的照片。我们将其称为RTE,以缩写方式称呼各类系统也是太空项目的传统。其实我们之前还考虑过在系统中加入危险检测功能,但时间有限最后只能作罢。
问:这架无人机是怎么自主飞行的?
Tim Canham:
其实你可以把这架无人机理解成某种传统的JPL航天器,其中安装一套排序引擎,我们为其编写了多条序列、相关命令,再将文件上传其中以供执行。
在模拟过程中,我们将低空飞行的制导部分划分成多个途经点,每个途经点都对应着我们在制导软件中设定的一条命令序列。在需要飞行时,我们会向无人机发出指令,之后即由制导软件接管并完成起飞、穿越各途经点、以及最后的着陆动作。
但这种方式中的每个途经点都经过特别设计,不能算是真正的自主飞行——我们并没有设定任何目标与规则,也没有做出任何高级推理,所以这只能算是半自主方案。更简单直接的方法就是,指定专人通过操纵杆远程指挥其飞行,但地球距离火星太远,即时遥控根本实现不了。面对紧张的项目时间表,我们只能提前制定出大体飞行计划,帮助无人机理解需要完成的预定飞行轨迹。在实际飞行中,无人机本身会根据风力、风向及其他实际环境因素调整飞行方式,保证始终沿既定航线前行。这同样是种半自主方案,用以顺利完成发射前制定的飞行路线。
就个人看来,我觉得这不能算是高级自主技术,而更多只是一种脚本式的飞行导引。只有直接要求无人机“给那块岩石拍张照片”、它就能照做,才算真正的自主飞行。但作为初始任务,我们这次只需要证明飞行器能在火星地表成功飞行。至于全自主飞行方案,我们会在后续任务中逐步尝试,这可能需要制作一架体量更大的无人机、搭载能够实现更强自主功能的先进硬件。
说起这个,我们不妨回顾火星上的第一位访客——探路者号。它的任务更简单:绕基地先进一圈,最好拍下岩石及其他样本的照片。因此作为初步技术演示,我们对火星上的第一架无人机也没必要苛求过多。
问:在某些极端情况下,无人机有没有可能偏离预定飞行路线?
Tim Canham:
制导软件会持续检测各传感器的运行状况,保证生成高质量数据。如果传感器发生故障,无人机确实会做出相应反应,即保持最后一条飞行指引信息、尝试着陆,而后向我们发送情况报告并等待处理意见。总之,在检测到传感器故障后,无人机将停止飞行。我们一共在机智号上安装了三个传感器,都与飞行过程紧密相关,三者的数据将融合起来共同为机智号提供导航指引。
问:初始飞行计划是怎么制定出来的?
Tim Canham:
我们经历了全面的选址过程,一切以「毅力号」火星车预计降落地点周边的环境为起点。根据实际情况,我们整理出轨道图像,并从中粗略识别出火星车将先后抵达的多个点位。结合周边岩石的坡度、高度乃至特定区域内的地表纹理,我们精心选取了适合无人机飞行的区域。
这里同样有不少权衡因素——最安全的地表应该没有任何纹理,代表这一块区域没有岩石;但这种缺少纹理的地面,也可能令无人机无法准确捕捉其特征、进而失去制导能力。为此,我们最好选择一片易于跟踪特征的碎石滩,同时保证这里没有任何可能威胁着陆过程的大石块。
问:这架无人机计划完成哪些飞行任务?
Tim Canham:
因为只是第一次尝试,所以我们只规划了三项主要任务,而且起降点全部选在同一位置。只有这样,才能保证无人机始终处于经过调查的安全飞行区域内。我们的时间窗口也非常有限,只有30天。如果时间再宽裕些,我们可能会尝试让其降落在其他看起来比较安全的新区域。但至少三项既定任务都是起飞、飞行、而后返航并降落在同一地点。
问:JPL拥有丰富的机器人制造经验,开发的机器人往往能够在主要任务完成后长时间保持正常运作。但这次只设定30天的任务执行周期,是否意味着除非发生意外事故,否则这架功能仍然完好的无人机将被直接遗弃在火星表面?
Tim Canham:
是的,计划就是这样,火星车会前往别处继续执行主要任务。毅力号团队已经为我们划拨了不少资源,留下了30天的时间窗口,我们对此深表感谢。在此之后,无论无人机状况是否良好,火星车本体都会继续前进。所以我们可以随意安排飞行任务,但绝对不能超过30天时限。
目前我们还没有规划好最后两轮飞行,但根据前三轮飞行任务的执行速度,我们可能会有一周左右时间做点新鲜的尝试。不过当下,我们还是要先认真把前三轮任务做好。
只要能成功完成一次飞行,我们的目标就算是基本实现。接下来我们会略微扩大飞行范围,如果仍然成功,那么最后两轮飞行就可以稍微冒点险了。比如我们可能会飞上一百米,或者做个大回环之类的动作。但最重要的是,理解无人机在火星表面的飞行方式,所以第一轮任务最重要,我们得认真观察无人机的飞行能力。
问:假如前四轮飞行一切顺利,那么在最后一轮尝试中,您打算设计怎样的飞行任务?是做点风险比较大、但成功后意义重大的尝试,还是风险较小、但重要性同样偏低的尝试?
问:JPL的工程师们在 探索 中还有哪些特别的发现,能给我们讲讲吗?
Tim Canham:
这是我们第一次在火星环境下使用Linux。没错,我们的无人机用的是Linux系统,软件框架则是JPL内部开发的立方体卫星与仪器专用框架。
几年前,我们已经把项目开源,现在大家可以直接通过GitHub下载火星无人机上的飞行软件,把它用在自己的项目当中。这是开源领域的一场辉煌胜利,我们把开源系统与开源飞行软件框架,同商用零部件整合了起来。
如果你想亲自尝试,也完全没有问题。对JPL来说,这种结合还是新鲜事物,以往我们大多使用特别安全、特别可靠的部件。但这一次灵感碰撞让人们感到兴奋无比,我们也期待这种新思路能在未来迸发出更大的能量。
回复
支持
反对
使用道具
举报
照妖镜
返回列表
发新帖
高级模式
B
Color
Image
Link
Quote
Code
Smilies
您需要登录后才可以回帖
登录
|
加入联盟
本版积分规则
发表回复
回帖后跳转到最后一页
快速回复
返回顶部
返回列表