Behavior Planner的实现方式比较常见的有几种:有限状态机(Finite State Machines)、规则匹配系统(Rule Based System)、强化学习系统(Reinforcement Learning)。
有限状态机中的State是各个行为决策,根据对外界环境的感知和交通规则的约束在各个状态之间转换。比如在路口红绿灯的场景,当路口交通灯为红色不可通行时,车辆会首先切换到Decelerate to Stop状态,然后在路口停止线完全停下来,进入Stop状态,并持续在Stop状态等待,直至交通灯变为绿色允许车辆通行,车辆进入Track Speed状态,继续前行。