外部视觉传感器。光学动捕系统是一种最常见的外部视觉传感器,它是基于计算机视觉原理,依靠安装在无人机机身上的特殊红外标志物,通过外部环绕场地排列的多个摄像头来测量运动物体在空间的运动状态。今年来,多所高校在光学动捕系统的环境下,展开了一系列的研究,并取得了丰硕的成果,代表性高校有瑞士联邦理工学院、宾夕法尼亚大学、麻省理工大学和杨百翰大学等。如图13为瑞士联邦理工学院测试平台FMA概念图,图14为杨百翰大学光学动捕系统测试平台概念图。MIT和Jon athan P.How 教授基于光学动捕系统建立了测试平台RAVEN,设计了一套室内环境下实时跟踪及位姿估计得系统。宾西法尼亚大学的Nathan Michacl教授基于光学动捕系统建立测试平台Multiple Micro-UAV Test Bed,实现了室内环境下多机协同。瑞士联邦理工学院的Raffaello D'Andrea教授依靠高分辨率的外部摄像机,完成了飞行器上放置倒立摆的平衡,飞行器投掷抓取小球,飞行器特技飞行等任务。
图13 FMA光学动捕系统概念图
图14 杨百翰大学光学动捕系统概念图
4、国外高校案例
(1) 麻省理工学院
麻省理工学院(Massachusettes Institute of Technology,MIT)的RAVEN(Real-Time Indoor Auto no mous Vehicle Tese Encironment)实验室,内部装有18台运动捕捉摄像机,可以实现无人机的室内定位,实验室内还有多辆自主的地面小车,研究对象有Draganflyer V Ti Pro 多旋翼无人机和无人小车组成。MIT的无人机集群健康管理计划(UAV SWARM Health Management Project)主要研究多架无人机的飞行演示。图15为多架四旋翼无人机对目标进行连续搜索和跟踪实验,图16为多机协同和编队实验。
图15 无人机目标搜索和跟踪实验
图16 十架无人机多机协同
(2) 斯坦福大学
斯坦福大学(Stanford University)的STARMAC(Stanford Testbed of Autonomous Rotorcraft for MultiAgent Control)项目是为了测试和验证多机算法和控制策略,它包含多个能够使用GPS和IMU传感器进行轨迹跟踪的四旋翼飞行器。Hoffmann G M团队基于斯坦福大学的试验台,首先将四旋翼无人机的非线性模型线性化,然后使用LQR控制方法设计了姿态控制器,使用滑模控制方法设计了高度控制器,并取得了良好的控制效果。
(3) 宾夕法尼亚大学
宾夕法尼亚大学的GRASP(General Robotics,Automation,Sensing and Perception)实验室对无人机的控制进行了大量研究,并基于光学动捕系统搭建了无人机测试平台,主要研究对象如图17所示。主要研究内容包括对多旋翼无人机的建模、多旋翼无人机自主飞行控制算法和多架无人机协同控制算法的研究。通过大量实验,GRASP实验室已经取得了很多创新成果,在该无人机测试平台下,无人机体现出很大的机动性,能够完成无人机集群航迹追踪、协同合作和编队飞行等测试,图18为多旋翼无人机协同飞行。